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ABSTRACT 

Let B and Q be associative algebras and let S be a Jordan subalgebra of 

•. Let f ( x l , . . . ,  Xm) be a (noncommutative) multil inear polynomial such 

that  $ is closed under f .  Let a: $ --+ Q be an f -homomorphism in the 

sense tha t  it is a linear map preserving f .  Under suitable conditions it is 

shown tha t  a is essentially given by a ring homomorphism. An analogous 

theorem for f-derivations is also proved. The proofs rest heavily on results 

concerning functional identities and d-freeness. 

* T h e  second a u t h o r  was par t ia l ly  s u p p o r t e d  by a g r an t  f rom the  Min is t ry  of 
Science of Slovenia.  
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1. I n t r o d u c t i o n  

A fundamental notion in the theory of associative algebras is that  of an (anti)- 

homomorphism: if/3 and Q are associative algebras over a commutative ring Z 

then a Z-module map a: /3 --+ Q is a homomorphism (resp. anti-homomorphism) 

if (st) ~ = s ° t  ~ (resp. (st) ° = t ° s  °) for all s , t  E B. The following general 

question arises. Let f ( x l , . . . , X m )  E Z ( X ) ,  m > 1, where Z ( X )  is the free 

Z-algebra generated by an infinite set X, let S be a Z-submodule of B which 

is closed under f (that is, f(-Sm) E S for all S m =  (S l , . . . ,  Sm) E Sin),  and let 

c~: S ~ Q be an f-homomorphism in the sense that  (~ is a Z-module map such 

- - ~  . . . S ~ - ~  s m  (here = (s~, , m))- Must a be es- that  f(~,~)~ = f ( s ,~ )  for all ~,~ E s,~ 

sentially expressed in terms of a homomorphism and/or  an anti-homomorphism 

of ($) into Q (here ($) denotes the subalgebra generated by S)? Of course in this 

generality the question is necessarily vague. Clearly one must impose some fur- 

ther conditions in order to have an affirmative solution. For instance, if S = Q 

and f is a polynomial identity (PI) for Q then any map is an f-homomorphism. 

Extensive results have been obtained in the cases where f = x l x2  - x2x l  (the 

Lie case) and f = x l x2  + X2Xl (the Jordan case). It is natural to use these cases 

as a guide to what kind of conditions one might impose in general. The Lie and 

Jordan products arise naturally in algebras with (or without) involution, and so 

S is often taken to be the skew elements or the symmetric elements of an algebra 

with involution. The ring Q is often taken to be prime (or the image of a is 

assumed to have prime-like properties). In view of the earlier remark regarding 

PIs it is natural to assume that  Q should not be PI of a too low degree. To put 

this another way, take Q = Q , ~ ( A )  to be the maximal ring of right quotients 

of a prime algebra A and let T~ be a subset of Q. Then deg(7~) is defined to 

be sup{deg(r) [ r E 7~} (possibly infinite), where deg(r) is the degree of the 

minimum polynomial over the extended centroid C of A satisfied by r. Then 

one imposes the condition that  deg(A) is not too low. 

Under such conditions the answers to our basic question above in the case of 

Lie and Jordan homomorphisms have been pretty well worked out. 

In the Lie case the first general result was proved by Hua [21] in 1949. There 

followed a series of papers, notably [24] in 1975, in which the presence of orthog- 

onal idempotents was assumed. The fundamental breakthrough (eliminating the 

requirement of idempotents) was made by Bregar [13] in 1993. It was the first 

paper in which functional identities were applied to the Lie map problems. The 

main idea of the proof can be easily described. If a: B --+ A is a Lie isomorphism 

of prime rings, then clearly [({x ~-1 }2)~ x] = 0 for all x E A. Under suitable 
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assumptions, all biadditive ,naps D: A 2 ~ A satisfying [D(x, x), x] = 0 can be 

described [13]. Hence one obtains the form of (x2) ~ and finally that  of (xy) c'. 

Bregar's paper was followed by the general solution [10] in 1994 for the involu- 

tion case where the functional identity [({x a-1 }3)~, x] = 0 was investigated (see 

also [16]). The use of power substitutions as the method of obtaining functional 

identities associated to Lie maps was not applicable to the description of Lie 

isomorphisms of Lie ideals (of skew elements) of prime rings (with involution) 

because a Lie ideal is not necessarily closed under the taking of powers of its 

elements. A new method of obtaining functional identities was developed in [7] 

where one described surjective Lie homomorphism onto Lie ideals of prime rings 

factorized by their centers. Th i s  method was also used in [2] where one investi- 

gated similar problems in the context of rings with involution. For a complete 

description of the Lie homomorphism results we refer the reader to [4]. 

The Jordan case has its roots in Herstein's 1956 paper [19] and also in papers 

[17, 18, 22] of Jacobson and Rickart, and Kaplansky. Further progress was made 

in 1967 under the assumption of orthogonal idempotents [23], but the main 

breakthrough came with Zelmanov's paper [27] in 1983 (see also McCrimmon's 

1989 paper [26]). 

Until recently relatively little had been achieved in case f was of degree higher 

than 2. In 1956 Herstein proved [19, Theorem K] that if f = x m, 1 E 13, Q 

is prime with center g, characteristic of g is either 0 or greater than m, and 

a: B --+ Q is a surjective f-homomorphism, then there exists A C C, /~m-1 __ 1, 

such that s a = As ~, a an (anti-)homomorphism of/3 onto Q. The assumption 
of 1 E B was subsequently removed in [15] in 1998. The general case of f -  

isomorphisms of prime algebras, where f is a multilinear polynomial of degree 

> 1, was investigated in [9] in 1999. In this paper a method of obtaining a 

functional identity associated to an f-isomorphism was found. 

In his 1961 AMS Hour Talk Herstein posed the problem [20, p. 528, prob- 

lem 1] for f = x "~ when 3 is either the symmetric elements or (for odd m) 

the skew elements of a simple algebra with involution. Some of these questions 

have been recently solved as corollaries to more general results. Namely, for 

f (Xm) E Z(A'), m > 1, a multilinear polynomial of degree m with all nonzero 

coefficients invertible in Z,  f-homomorphisms have been determined in the fol- 

lowing situations: 

(I) $ a Lie ideal of B, S ~ a noncentral Lie ideal of a prime algebra A, Q = 

Qmr(A), deg(A) > max{2m, 7} [8, Theorem 1.1]; 

(II) /3 with involution, ,S a Lie ideal of the skew elements of/3, .4 prime with 
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* and skew elements /C, Q = Qmr(A),  S a a noncentral Lie ideal of K~, 

deg(A) > max{4m + 2, 20} [2, Theorem 1.5]. 

In view of the results (I) and (II) the situation which remains to be considered 

is the one in which ,S is the Jordan algebra of symmetric elements of an algebra 

B with involution. This is the principal topic of the present paper. The main 

results of this paper are Theorem 3.7 (in which f-homomorphisms are reduced 

to Jordan homomorphisms) and Theorem 3.9 (in which Jordan homomorphisms 

are reduced to ordinary homomorphisms). As a point of independent interest 

we remark that  the conditions assumed in Theorem 3.9 enable us to bypass the 

Zelmanov approach to Jordan homomorphisms. As a corollary to Theorem 3.9 

we have 

THEOREM 1.1: Let B be a Z-algebra with involution and let S be the Jordan 

algebra of symmetric elements of B. Let f (Xm),  m > 1, be a proper (that is, 

all its nonzero coefficients are invertible in Z )  multilinear polynomial in Z ( X }  

such that $ is closed under f .  Let A be a prime Z-algebra with involution *, 

with extended centroid C, with char(A) ~ 2 and Q = Qmr(A),  and suppose 

deg(A) > max{6m+ 1, 15}. Let a: $ ~ Q be an f -homomorphism whose range 

S ~ contains the symmetric elements of some nonzero ,-ideal Z of A.  Further, 

suppose that  at least one of the following two conditions holds: 

(i) a is one-to-one and $ does not satisfy a PI  of degree <_ m + 4. 

(ii) f is a Jordan polynomial. 

Then there exist A E C, with A m-1 = 1, ~b: S --+ C a Z-module  map, and a 

Z-algebra homomorphism a: (S} -~ Q such that s ~ = As ~ + ~b(s) for all s E S.  

Furthermore, i f  f(i) = f ( x l , . . .  , x i - 1 , 1 , x i + l , . . .  ,xm) ~ 0 for some i, then 

~ = 0 .  

Another important notion in the theory of associative algebras is that  of a 

derivation: if B C_ Q are associative Z-algebras then a Z-module map d: B -+ Q 

is a derivation if (st) d = s d t +  st d for all s, t E B. Let Q be a Z-algebra, let 

f (Xm) E Z(X} be a multilinear polynomial, and let S be a Z-submodule of Q 

which is closed under f .  Then we define an f-derivation 5: $ -+ Q to be a 

Z-module map such that  

m 

f(-$m) 5 = ~ f (S l , . . . ,S i - - l ,S~ ,S i+ l , . . . ,Sm)  
i----1 

for all -Sin E Sin. In a sense the notion of an f-derivation 5 is secondary to that  
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of an f-homomorphism, since the map 

is an f-homomorphism (thus enabling one to be able to deduce f-derivation 

results from f-homomorphism results as it was first done in [3]). Thus we will 

not go into any details as we have done for f-homomorphisms; suffice it to say 

that  there are indeed counterparts for f-derivations of all the above mentioned 

results for f-homomorphisms. In this paper the result we prove for f-derivations 

(Theorem 4.1) has as a corollary the following 

THEOREM 1.2: Let A be a prime Z-algebra with involution, with extended 

centroid C, with char(A) # 2 and Q = Qmr(A),  and let S be the Jordan 

algebra of symmetric dements of A.  Let f (Xm),  m > 1, be a proper multilinear 

polynomial in Z ( X )  such that $ is closed under f .  Suppose that deg(A) > 

max{6m + 1, 15} and let 6: $ --+ Q be an f-derivation. Then there exist a 

derivation d: (S) -+ Q, A C C, and a Z-module  map #: $ ~ Q such that 

s d = s ~ + As + #(s) for all s E S. Furthermore, we have: 

(a) I f  the characteristic of  A does not divide m - 1, then A = O. 

(b) I f  f(i) 7~ 0 for some i, then # = O. 

The statements of the main theorems of this paper (Theorems 3.7, 3.9, and 

4.1) involve the notion of d-free sets introduced in [5], and the proofs of these 

theorems depend heavily on several results concerning d-freeness obtained in 

[5, 6]. Therefore, in preparation for the main theorems, we shall give in section 

2 a review of the definition of a d-free set and then gather together the statements 

of those results on d-freeness which are needed in sections 3 and 4. Since $ is 

not closed under the Lie product, the method from [9] of obtaining a functional 

identity associated to an f-homomorphism (which was also used in [2, 8]) is not 

applicable to our situation, and so we develop a new one in section 3. 

Throughout this paper we shall assume that  all maps and structures respect 

Z, even if Z is not always explicitly mentioned. 

2. Functional identities and d-freeness 

Before embarking on a description of the necessarily complicated functional 

identities required in this paper, we suggest that  the uninitiated reader might 

find it helpful to look at the introductory account [14] of this subject by Bre~ar. 

Let a: $ --+ Q be a mapping of a set S into a unital algebra Q; we denote 

the center of Q by g and the image of a by 7~ = S ~. As a special case we 
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have ,S = 74 and a = idn. Let m be a positive integer. We will be considering 

several types of functions from S m into Q. The first two are the "basic building 

blocks" and the latter two are constructed from the first two. 

(a) "Monomial" functions. Let T = { x l , . . .  ,Xm} be a finite set and let ./~4m 

denote the set of all formal multilinear monomials M = xil . . .x~k of 

degree k <_ m. Each such M induces a function MI: ,S "~ --+ Q by the rule 

S m =  ( s l , . . . , S m )  --+ s~ sO' ""s~ = M ~. 

(b) Arbitrary functions on ,S n, n < m. Given B: s n  ~ Q there are various 

ways that  B induces a function of,S m into Q. Namely, given 1 < j l  < j :  < 

• .. < j• < m, then B induces a function B': S m --+ Q via B ' ( s l , . . . ,  sin) = 

B ( s j ,  . . . .  , s j , , ) .  

(c) Multilinear quasi-monomial functions. Let L ~ be the monomial function 

determined by L = xqx i2 . . . x ik ,  let A: S m - k  ~ C, and let )~L be the 

function given by the rule ( s l , . . . ,  sin) ~ A(Sjl, s j2 , . . . ,  sj ..... k), where j t  < 

j t+l and { j l , . . .  , jm-k},  { i l , . . . ,  ik} is a partit ion of the set { 1 , 2 , . . . ,  m}. 

Then ~n La is a function from sm into Q; it is called a multilinear quasi- 

monomial (function). A sum of such functions is called a multilinear 

quasi-polynomial (function) of degree <_ m. 

(d) Functions of the form M~BM,NN a. This (perhaps overly concise) no- 

tation is explained as follows. We write M = xilxi2. . .xi , ,  and N = 

xjl xj2. . .x j , , ,  where { i l , . . . ,  i~} and { j l , . . . ,  jv } are disjoint and u + v < 

m. Then BM,N: ,S n ~ Q, n = m--u--v, is a function acting on the n-tuple 

(Skl , . . . ,Sk , ) ,  where { i l , . . . , i u } ,  { j l , . . . , j v } ,  { k l , . . . , k n }  is a parti t ion 

of { 1 , 2 , . . . , m }  and kl < k2 < . . .  < kn. 

We are now in a position to describe a certain kind of functional identity 

which will turn out to lie at the heart  of this paper (we will forego at tempting 

to give any general definition of "functional identity"). The identity we are 

about to write down (1) is, in more concise notation, the same identity being 

examined in [6, Theorem 2.6]. 

(1) Z aM,NMaBM,NN~ = Z ALLa for all ( s , , . . . , S m )  e Sm. 
M,N L 

Here n < m is fixed, aM,g E C, M, N ranges over M m  while following the 

constraints given in (d), and L ranges over Mm while conforming to (c). The 

idea here is that  each BM,N is a function involving a in some way, and the hope 

is that  (under suitable conditions on 7¢) the presence of the monomial functions 

M% N ~ and the fact that  the right hand side is a multilinear quasi-polynomial 

is somehow enough to force each BM,N to be a quasi-polynomial of degree <_ n. 
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As an example, let $ be a ring and let a: S -+ Q be a surjective Lie homo- 

morphism. One linearizes the identity Is a, (s2) ~] = 0 to obtain 

(2) [s ~, (t~ + ~t) ~] + It% (su + ~ ) ~ ]  + [ ~ ,  (st + t~) ~] = 0 

for all s, t, u E S. 

We note that  (2) fits (1) if we take m = 3, n = 2, each B(x, y) = (xy + yx) ~ 

and each AL = 0. 
As a simpler example, let S = Q be a prime ring and let a be a so-called 

centralizing map: Is ~, s] = p(s) E C. Linearizing this identity we have [s a, t] + 

[t ~, s] = A(s, t) E C for all s, t E S. This fits (1) with m = 2, n = 1, and each 

B(x) = x ~. It is well known that  the solution of this functional identity is the 

quasi-polynomial of degree 1: s ~ = ps + u(s), p E C, u: $ ~ C (see [12]). 

Returning now to the functional identity (1), we note that  all we are lacking 

now is a (reasonable) condition on 7~ which will force each BM,N to be of the 

desired form. It turns out that  one such condition is that  ~ be a so-called d- 

free subset of Q (for appropriate d), and we now proceed to define this notion. 

The functional identities required for this definition are very special cases of 

(1). Let T~ be a subset of a unital algebra Q. Let m be a positive integer, let 

T = { x l , . . . ,  xm}, and let ~ and ,7 be subsets of T. Furthermore let El, Fj, 

i E I ,  j E ,7, be functions of T~ m-1 into Q. We consider the following FI's: 

(3) E Eisi + E sjFj = 0 for all Sm E 7~m; 
iEI jEJ 

(4) E E i s i + E s j F j E C  fo ra l l~ ,~ET~ m. 
iEZ jEJ 

It is understood that  Ei is the function acting on (Sl, . . . ,  si-1, 8i+1,..., 8rn), 

etc. One "obvious" solution of both (3) and (4) is 

(5) E~ = Z sJP~J + ~ ;  Ej = - E ~ J ~ i -  ~J' 
iCj,jEJ iCj,iEZ 

where Pij = Pji is a function: T~ m-2 --+ Q (it being understood that  in (5) it acts 

on (S l , . . . ,  si-1, Si+ l , . . . ,  Sy-1, s j+l , . . . ,  Sm)), and ;~k: 7~m-1 ~ C is a function 

acting on (S l , . . . ,Sk - I ,Sk+I , . . - ,Sn )  such that  Ak = 0 if k is not in TM,7.  We 

shall call (5) the standard solution of (3) and (4). 

Detinition 2.1: Let d be a positive integer and let 7~ be a subset of a unital 

algebra Q. Then 7~ is a d-free subset of Q if the following conditions are satisfied: 

1. For all positive integers m and subsets I ,  ,7 of {Xl, . . . ,Xm} with 

max{]Ih 1,71} ~ d, (3) implies (5). 



292 K.I. BEIDAR ET AL. Isr. J. Math. 

2. For all positive integers m and subsets 1:, J of {x i , . . . ,Xm}  with 

max{IZI, [J]} < d, (4) implies (5). 

Clearly if T/ is  d-free and d' <_ d then T~ is also d'-free. If T~ is d-free, then 

any identity of the form (3) with m _< d has only the standard solution (5) and 

any identity of the form (4) with m < d has only the standard solution (5). 

We now list the theorems on d-freeness which will be needed in this paper. 

Our first theorem shows that  if A is a prime algebra and Q = Qmr(A) then 

(put rather loosely) various important subsets of A will be d-free if deg(A) is 

sufficiently high. If A is algebraic of bounded degree over C then deg(A) is 

defined to be the least such bound n; otherwise deg(A) = oc. There are two 

equivalent conditions to n = deg(A): 

1. dim(AC :C) = n 2 and 

2. 2n is the minimum degree of a polynomial identity for A. 

THEOREM 2.2: Let A be a prime algebra with Q = Qmr(A) and let n = deg(A). 

(a) If  Z is a nonzero ideal of A, then deg(/:) = n and Z is n-free in Q 

[5, Lemma 2.1 and Corollary 2.10]. 
(b) If  T~ is a noncentral Lie ideal of A and n > d, then 7~ is d-free in Q 

[5, Theorem 2.20]. 
(c) Suppose furthermore that A has an involution, with lC denoting the skew 

elements and S the symmetric elements. 
(cl) If  char(A) ~ 2, ~ is a noncentral Lie ideal of l~ and n > 2 d +  2, then Tl 

is d-free in Q [1, Theorem 1.1]. 
(c2) If  char(A) # 2, n > 2d + 1 then $ is d-free in Q [5, Theorem 2.4]. 

A consequence of Theorem 2.2 is that  if any one of the sets A, Z, K:, $, T~ 

listed above is not d-free for some d, then A must be a PI algebra. 

Next we have a general theorem about d-freeness. 

THEOREM 2.3: Let Tt be a subset of a unital ring Q, and let C be the center 

of Q. 

(a) If  7~ is d-free in Q and T is a subset of Q containing Tt then T is d-free 

in Q [5, Corollary 2.9]. 

(b) If  A is an invertible element of C, then ~ is d-free if and only if ATt is 

d-free [5, Remark 2.11 (c)]. 

In preparation for the next result let Q be a unital ring with center C. We 

define Q to be the direct sum Q • Q with multiplication given by (x, y)(u, v) = 
(xu, xv + yu). Note that  the center of Q is C" = C ® C. The following theorem is 

very useful in making the transition from f-derivations to f-homomorphisms. 
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THEOREM 2.4: If TZ is a d-free subset of a unital ring Q and 5: TZ -~ Q is 

any (set-theoretic) map, then T~' = {(x,x ~) [ x E T~} is a d-free subset of 

[3, Theorem 2.1]. 

We now return to the discussion of the more complicated functional identities 

described at the beginning of this section, and we refer the reader to those 

passages explaining various terminologies and conditions. Thus we are now 

assuming that  a: S --+ Q is a mapping from a set S into a unital algebra Q, 

with 7~ = 8a  and center of Q = C. In the next two theorems (which are critical 

to this paper) m will be a fixed positive integer and the functional identities 

under discussion take place in the setting of functions from S m into Q. 

THEOREM 2.5 ([6, Theorem 1.1]): Suppose S satisfies a multilinear quasi- 

polynomial identity 

Z ALL a = 0 for all 8m E 8 m. 
LEAd., 

If T£ is (m + 1)-free in Q then each "coefficient" AL = O. 

The next theorem treats the functional identity (1) described earlier this 

section; under assumptions of d-freeness and an additional technical condition 

it is shown that  the functions involved are (as hoped) indeed multilinear quasi- 

polynomials. 

THEOREM 2.6 ([6, Theorem 2.6]): Let n < m be fixed, and suppose S satisfies 

the functional identity (1), that is 

Z aM,NM~BM,NN~ = ~ ALL~ 
M,N L 

for all -sin E S m (where various notations and conditions have been explained 

earlier in (a)-(d)). Furthermore, assume the following two conditions: 

1. ~ is (m + 1)-free in Q. 

2. Let u be the smallest deg(M) for which aM,NBM,N 7 £ 0 for some N. 

Suppose that for every pair M, N such that aM,NBM,N ~ 0 there exist a 

pair U, V with deg(U) = u, Bu, v = BM,N, and au, v is invertible in C. 

Then each BM,N is a multilinear quasi-polynomial of degree <_ n, that is, 

BM,N : Z [IM'N,KKa for all -Sn E S n. 
KEAd,, 

Moreover, if  Q is an algebra over a commutative ring Z, S is a Z-module and 

each BM,N is a multilinear map, then all #M,N,K are multilinear maps. 
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Condition 2 of this theorem in particular means that  if (1) contains a nonzero 

summand al,N1B1,N1Nff (the case when u = 0), then for any function BM,N 

involved in (1) we assume that  (1) contains a summand al,N2BI,N2N~ where 

B1,N2 = BM,N and al,N2 is invertible in C. 

The final theorem we present in this section will be crucial to the proof of 

Theorem 3.9 and is a special case of [7, Theorem 2.7]. 

THEOREM 2.7: Let bl be a Lie ideal of  an associative Z-algebra 13 and let Q 
1 be a unital associative Z-algebra with center C such that ~ E C, C is a C-direct 

summand of Q, and I is the only nonzero idempotent in C. Let 7: bl ~ Q = Q/C 

be a Lie homomorphism such that U "y = R where 7i is a 7-free subset of Q. 

Then there exists a Z -map  a: (U) -+ (Tt}C + C such that x "~ = x-~ for all x E bl 

and a is either a homomorphism or the negative of an antihomomorphism. 

3. f-homomorphisms 

Let B be an associative ring, let $ be a Jordan subring of B and let Q be an asso- 
1 ciative ring with 1 and with center C. Let ~ E C. Moreover, let B and Q be alge- 

bras over a commutative unital ring Z with Z $  = 3,  let f ( x l , . . .  ,Xm) E Z ( X } ,  

m >_ 2 be a proper multilinear polynomial (that is, a multilinear polynomial 

all of whose nonzero coefficients are invertible in Z)  of degree m, and let ,9 

be closed under f ,  that  is, f(Um) E ,S for all U m =  (u l , . . . ,U m )  E 8 m. Let 

a: 8 ~ Q be an f-homomorphism, that  is, a is a Z-module map satisfying 

(6) f(Um) a = f(u~n) for all Um e Sin. 

Our first main goal (Theorem 3.7) in this section is to show, under appropriate 

conditions, that  a is essentially determined by a Jordan homomorphism ~: ,S --+ 

Q. The overriding condition which is at the core of our arguments is that  ,S ~ 

is a 3m-free subset of Q and we thereby impose this condition now. There 

are a variety of results, under conditions notably based on the use of the so- 

called Zelmanov polynomial [25, 26], which asserts that  Jordan homomorphisms 

are restrictions of homomorphisms or antihomomorphisms. In our final goal 

of this section (Theorem 3.9), however, we choose to steer clear of imposing 

the additional conditions required for the Zelmanov-based results. Instead we 

shall focus on a (generalization of the) situation in which B is a ring with 

involution and S is the Jordan ring of symmetric elements of B; the passage from 

Jordan homomorphisms to homomorphisms will, rather surprisingly, follow as 

a corollary to a result on Lie homomorphisms proved by Beidar and Chebotar 

[7, Theorem 2.7]. 
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Now we shall give the reader a road map motivating the sequence of steps 

leading up to Theorem 3.7. A reasonable (and ambitious!) first goal is to show 

that a preserves (or at least comes close to preserving) the product 

(7) [ [ w , v ] , u ] = ( u o v )  o w - ( u o w ) o v E $  for a l lu ,  v, w e S ,  

where [u, v] = u v  - v u  and u o v = uv  + vu .  It is therefore natural to con- 

sider the function B: $3 __+ Q given by B ( u ,  v, w) = [[u, v], w]% It is easy to 

see that B satisfies each of conditions (9), (10), (11) given in Proposition 3.1. 

Indeed, (10) is just the Jacobi identity for the Lie product [x,y], (11) is just 

the anticommutativity of Ix, y] and (9) stems from the well-known derivation 

formula 

m 

[[u,v], WlW2 ,, ,~m] = Z W l  , - ~ - 1 [ [ ~ ,  v],~dW~+l . . .w~. 
i--1 

Proposition 3.1, whose proof is quite formal and relies heavily on d-freeness the- 

orems stated in Section 2, accomplishes the major step of getting (Corollary 3.2) 

to 

(8) [[u, v], w]" = ~1 [[u s, <],  w"] + ~(. ,  v, w), 

hi E C, w: S 3 --+ C. It is imperative that A1 at least be invertible in C and to this 

end it is assumed that either of two fairly natural conditions hold; these are given 

as conditions (i) and (ii) just  preceding Lemma 3.4, which asserts that  under (i) 

or (ii), A1 is indeed invertible. Lemma 3.3 is needed in the proof of Lemma 3.4 

in the case of condition (ii). Making use of A1 being invertible, Lemma 3.5 then 

shows that a acts in a Jordan-like manner on the Jordan product u o v  = u v + v u ,  

u, v E S, and Lemma 3.6 then defines a Jordan homomorphism fl: S ~ Q such 

that u ~ = Au ~ + # ( u ) ,  u C S .  

We start with the following proposition, noting that we do not need to assume 

S is a Jordan subring, only that S is an additive subgroup closed under f and 

[IS, s], s ] c  s. 

PROPOSITION 3.1: S u p p o s e  t h a t  a m a p  B:  S 3 --~ Q sat is f ies  

m 

(9) B ( u , v , f ( ~ , ~ ) )  = E f ( w ~ , . . .  , w T _ l , B ( u , v ,  w i ) , w ~ + l , . . .  ,w~)  
i : 1  

for all u, v,  Wl , . . . , Wm E S ,  

(10) B ( u ,  v,  w )  + B ( v ,  w ,  u)  + B ( w ,  u,  v) = 0 
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for all u, v, w E S, and 

(11) B(u,v,w) + B(v,u,w) =O for allu, v,w E S. 

f f  S ~ is a (3m)-free subset of Q, then there exist )~1 E C and a map w: S 3 -+ C 
such that 

Proof." 

B(?_t,v,w) =/~l[[?tC~,vC~], wC~] +o2(u,v,w) for alllt, y ,w  E S. 

By (10) we have 

B(f(~m), f(vm),  f(Wm)) + B(f(~m),/(win), f(Um)) 

+ B ( f ( ~ m ) ,  f(Um), f(Vm)) = O, 

which can be, according to (9), written in the form 

m 

E f ( w T " ' "  W~-l' B(f(~m), :(~,~), wi), w~+l,..., w~) 
i = 1  

m 

u ~ B(f(Vm),f(~m),Ui),U~+l, .. u~)  + ~ f ( ~ , . . . ,  ~-1, • , 
i = 1  

m 

. C a + E f ( v l " " '  v~-l' B(f(~m), f(Um), vi), v~+l, • . ,  m) = 0 
i=l 

for all Um,Vm,Wm E Sin. By Theorem 2.6 with 3m replacing m and 2m + 1 

replacing n, there exist #K: ~2m+l-deg(K) _.+ C, K E J~2m+l, such that  

B ( : ( ~ l , / ( ~ ) , w ) =  ~ ,K(~ ,~m,~ lK(~ ,~m,~  ~1 
KE.A~2m÷I 

for all um,vm E Sm,w E S. Next, as a special case of (10) we have 

B(f(Gm), f(Vm), W) + B(f(~m), w, S(~m)) + B(w, f(Um), f(Vm)) = 0, 

which can be written as 

KE.A,12m+I  

m 
+ Z I ( u ~ , . -  u s • , i-1, B(f(~m), w, ui), u~+ 1, . . ,  u~)  

i----1 
m 

a . VC~ + ~ f(v~,..., vL1, B(w, f ( ~ ) ,  ~), V~+l, • . ,  ~1 : 0, 
i = 1  
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for all Um,Vm E S m, w E S. By (11) and Theorem 2.6 with 2m + 1 replacing 

m and m + 2 replacing n, there exist V K :  S m+2-deg(K) ~ C ,  K E J ~ r a + 2 ,  such 

that  

B(f(~),v,w)= ~_. .~..(~m,v,~)g(~,v~,:) 
K ~ J~  rn -t- 2 

for all um E S m, v ,w  E S. Next, (10) implies 

B( f (~m) ,  v, w) + B(v,  w, f(Um)) + B(w,  f(Um), v) = 0, 

which can be, in view of (11), written as 

~ - ( ~ ,  v, ~)K(~7~, v", : )  
KE.A~m+2 
m 

+ E f ( u ~ , . . .  u c~ B (v ,w ,  u i ) ,u  c~ . u c~ , i - 1 ,  i + 1 , "  ", m )  ---- 0 
i----1 

for all ~,~ E $ m  v, w E S, where COK is the sum of several UL. By Theorem 2.6 

there exist hi E C, i = 1 , . . . , 6 ,  #i: $ ~ C, i = 1 , . . . , 6  ui: S 2 ~ C, i = 1,2,3 

and co: S 3 --+ C such that  

B ( u , v , w )  =AlUC~Vc~W c~ + A2uC'wC'v c~ + A3v~uC~w ~ 

"1- )~ 4 V °~ W a l t  a "t- ~ h W °~ l t  O~ V a -]'- )~ 6 W °~ V c~ U °~ 

-~- tt4(V)W~?£ (x -~- tth(W)?£(~V °t -I- /]6(W)V~?A (x 

+ ~ l ( U , v ) w  ~ + ~ 2 ( u , w ) v "  + ~ 3 ( v , ~ ) u "  + c o ( ~ , v , ~ )  

for all u, v, w E S. Applying Theorem 2.5 we see that  (11) yields 

AI + A3 ---- A2 -~- A4 ---- A5 "~ A 6 ---- O, 

. , ( u )  + -3 (~)  = . 2 (~ )  + -4(u)  = -5(~)  + -6(~)  = 0, 

t~l(U,V) +t~l(v,u) = t~2(u, v) +t~3(u,v) = O, 

for all u, v E S. Therefore, 

?.tc~ .e/~c~ ~V ~ B ( l t ,  v , f ( W m ) )  - - /~l[ l t°~,vCt]f(W~n ) "~-A2 JI .  m )  

- ~: v" :t~ju"-~'" + A~ f (~7~) [~", v" ] 

+ ul (u)v~f(~) -I- u2(u)f(~)v c' 

- -  1 ]1  (v)uC' f (~m) - u2(v) f ( ~ ) u "  

+ uh( f (~m))[ua,v  c~] + , l ( u , v ) f ( ~ n )  

+ #2(u, f (~m))V c' - p2(v, f ( ~ m ) ) u  (~ 

+ ~(~, ~, f(~m)), 
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while  on the other hand,  

m 
, . , . , o~  5 . W 5 

B ( z t ,  v , f ( w m ) )  = Z I ( w ~  w i _ l , B ( u , v ,  w i )  , w i + i , .  . ,  m )  

i~1 
m 

. . . .  A " 5 w S v 5  - A 2 v 5 w ~ u  5 = ~ f ( w g ,  , w ? l , ( ~ l [ u S , : ] w ? +  2~ 
i-----1 

+ ~ w ~ [ u s ,  v 5] + . l (u)v"~?  + .2(u)w?v 5 - .~(v)uSw~ 

- .2(v)w?~ ~ + .~(w~)[~5, ~ 5] + .~(u,  v)~? + m(~,  ~ ) v  5 

• W 0~  - re(v ,  w~)u 5 + ~(u, v, w~)}, w?+~ , . . ,  ~).  

Comparing we get 

U 5 . ¢ : ~ o ~ v  5 ~ ~ 5 ¢ ( ~ 5 ~ U 5  A l [ u 5 , v 5 ] f ( ~ )  + A2 J(  m] - A2v j (  m) 

--5 u 5 v 5 ( u ) v 5 f ( ~ )  + u 2 ( u ) f ( ~ m ) v 5  "I- ~5f(Wm) [ , ] -{- I)1 

- 2 ( v ) f ( W m )  + u 5 ( f ( W m ) ) [ u  5, v 5] _ . ~ ( ~ ) u s f ( ~ )  . - 5  ~5 

+/zl  (u, v) f ( ~ )  + #2(u, f ( ~ )  )v 5 - #2(v, f (~m) )u 5 
m 

Z s (  5 , .  w 5 ( ~ [ : , v S ] w ?  + w ( u , v , f ( ~ m ) ) =  W l , "  , i - 1 ,  
i=1 

+ ,,2~" ~ 5wSvSi - ~2v'~w? u5 + ~sw?[u% v5] 

+ .i (u)v"w~ + ~,~(~)w?v 5 - .i (v)~Sw? 

- .~(v)w?u 5 + .~ (~) [~5 ,  vS] + ~ ( ~ ,  v)w? 

• W 5 + re(u,  w~)v '~ - re(v ,  w~)u 5 + ~(u, v, w~)}, w ~ + l , . . ,  ~)  

for all u, v, w l , . . . ,  Wm E S.  By Theorem 2.5 we have, in particular, 

(12) ~lU°~V°~ f ( - ~ )  + ~2?£°~ f ( ~ ) v  °~ - ~lVV~U°~ f ( ~ m )  

- ,~.,~5,u ~ .... 5,u5v 5 A5f(wm)v u --  A2V .~( m )  + A 5 y t W m )  __ ~ 5 5 
?D, 

: . .  A 5 5 5 ) ~ l V S U 5 W ~  

i=1 
- - )k  V 5 5 (X 2 W i Zt + )~5W~Uc'v a -- " 5vC~us~ •, A5W i j ' ,W~+I . .  W~n), 

(13) Ul(U)VSf(~5m) + u2(u)f(w~n)V 5 
- u~ (v)u5f(¥~) - u2 (v) f (~)u  5 
m 

W 5 . - -  E f (  1 ,  " ' ,  { / ] l ( u ) v S w ~  q- / ]2 (~ t )w~ v5  - / ] l ( V ) u s w ~  

i--1 

- , 2 ( v ) w ~  5 + l ] 5 ( w i ) u S v  5 - l ] 5 ( w i ) v 5 u 5 } ,  W ~ + l , . . . ,  wrY), 
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(14) ,1 (u, v ) f ( ~ )  = 
m 

f ( w ~ , . . . ,  {~1 (u, v)w~ + ~2(u, w~)v ~ - ~:(v, w~)u ~ }, W~+l, . . . ,  ~ )  
i----1 

for all u, v, w l , . . . ,  w,~ E S. 

Note that  the coefficient of u a w ~ v a w ~  . . .  W~n in (12) is equal to A2. But then 

A2 = 0 by Theorem 2.5. Similarly, computing coefficients at u a v ~ w ~ . . ' w ~ n  

and w l'~u ~w 2c~. •. w m~ in (13), we obtain u5 = 0 and Ul = -u2,  and computing 

. ~ andv~w~ . .  ~ in (14) , we obtain #2 = 0. coefficients at u~w~ •. w m • w m 

By (10) we now have 

_ v C ~ u C ~ w  c~ _ UC~wC~v  c~ _ w C ~ v ( ~ l t  c~) 

+ 2~l(~)v~w ~ + 2-1(v)w% ~ + 2~l(u)v"w ~ 

- -  2 1 J l ( V ) U ° ~ W  °~ - -  2 P l ( u ) w C ~ v  c~ - -  2 I / I ( w ) v C ~ u  °c 

+ m (u, v)w" + ul (v, w)u ~ + ul (w, u)v" 

+ w(u, v, w) + w(v, w, u) + w(w, u, v) = O, 

for all u , v , w  E $ .  By Theorem 2.5 A1 = -As,  #1 = 0, and since Q is 2-torsion 

free, ul = 0. The proof is complete. | 

From now on we assume that  $ is a Jordan subring of /3  and note that,  in 

view of (7), [[S,$],8] C_ S. Thus, as a special case of Proposition 3.1, we have 

COROLLARY 3.2: Suppose  tha t  S is a Jordan subr ing  o£B.  I f  S ~ is a (3m)-free 

subse t  o f  Q, then there  exis t  A1 C g and a m a p  ~: $3 _+ C such tha t  

(15) [ [ u , v ] , w ] a = A l [ [ u a , v " ] , w a ] + w ( u , v , w )  f o r a l l u ,  v, w E $ .  

Our next goal is to find reasonable conditions under which the element A1 

from Corollary3.2 is invertible. To this end we shall start  by imposing the 

condition: 

(16) Every element of g is either invertible or has square zero. 

The reason for this condition will become clearer when f-derivations are studied 

in Section 4. At any rate it will turn out that  condition (16) is enough to insure 

that  A1 is invertible when f is a Jordan polynomial, that  is, an element in Z(2() 

that  can be expressed from the indeterminates by means of the sum and the 

Jordan product. In order to prove this, we shall need the following simple, but 
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crucial lemma. First we introduce some further notation. By J we denote the 

free special Jordan algebra over Z,  i.e. the Jordan algebra of Jordan polynomials 

in Z ( X ) ,  and by U the additive subgroup of Z ( X )  generated by [[J, J], J]. Of 

course, U C_ J by (7). 

LEMMA 3.3: I f  h ( X l , . . . , X m )  E J is multilinear of degreem k 1, then 

= o + g ( x , , . .  . , z m )  

where q E J and g E U. 

Proof: Clearly, it suffices to consider the case when h is a Jordan monomial. 

We claim that  any Jordan monomial h can be written as 

h = ((((Xm o q l )o  q2)'" ")o qk-1)o qk 

where the qi's are Jordan monomials. We prove this by induction on the degree 

of h. If the degree is 1, there is nothing to prove. In general, we write h = hi oh2, 

where hi and h2 are Jordan monomials, both having degrees smaller than h. 

Since the Jordan product is commutative, there is no loss of generality in as- 

suming that  hi involves the indeterminate Xm. Apply the induction assumption 

on hi and our claim is proved. 

Now, we prove the lemma by induction on k. For k = 1 the lemma is trivial, 

so let k > 1. By (7) it follows that  

h = (qk-t o [(((Xm o ql) o q2 ) " ' )  o qk-2]) o qk 

• (qk-1 o qk) o [(((Xm o ql) o q2)'" ") o qk-2] + U, 

! 
that  is, h e ((((Xm o ql) o q2)'" ") o qk-2) o qk-1 + U, where ' qk-1 -'- qk-1 o qk. 
Apply the induction assumption and the desired conclusion follows. | 

We assume henceforward that  the conditions of Corollary 3.2 are fulfilled. We 

shall consider the following two conditions: 

(i) a is one-to-one, and S does not satisfy a PI of degree _< m + 4. 

(ii) f is a Jordan polynomial. 

Let f(~) be the partial derivative of the polynomial f with respect to xi 

(roughly speaking, one gets f(i) by replacing xi in f ( x l , . . . ,  Xm) by 1). 

LEMMA 3.4: I f  (i) or (ii) holds, then A1 is invertible. 
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Proof: Assuming that  A1 is not invertibIe, we have A~ = 0 in view of (16). Now 

let u, v, w, s, t E S. It follows from (15) that  

[[[[it, V], W], S], t] c~ : /~1 [[[[it, V], ?_0] c~ , 8°~], t (x] Jr ~d([[/t, V], W], S, t) 

)~1 [[-~1 [[ita, VC~], W a] + 02(U, V, W), 8c~], t c~] + 02([[it, V], W], 8, t) 

= ~([[~, v], w], s, t). 

Thus, we have shown that  

(17) [[r,s] , t]~=w(r,s , t )  EC fo ra l l rE[ [S , S ] , S ] , s ,  t E S .  

Assume now that  (i) holds. Then, using (17) we write for u e [[$,S],3], 
v E $, ~,~ E Sin, 

w(u, v, f(wm)) = [[u, v], f(Wm)]" 

. .  ~ . . ,  W G~ 

i----1 
m 

= ~ , . . . ,  ~_~, [[it, v], ~ ] - , . . . ,  w~)  
(18) i=l 

m 

W c~ . . . W ~ = E f (  I ,  " ' ,W~--I ,~J(I t ,  V ,Wi) 'W~+I '  " ,  m)  
i= ,  
m 

-~-- E O2(it, V, W i ) f ( w ~ ,  " " " , wC~i-1, 1, wai+l, ' ' '  , we~m)" 
i----1 

It now follows from Theorem 2.5 that  w(u, v, f(~,~)) -- 0 for each u E [[$, S], 8], 

v E $, Ym E Sin. Therefore [[u, v], f(~m)] ~ = 0, whence [[u, v], f(~m)] = 0 for 

all u E [[$, 3], S], v E 8, U-~m E Sin. This is a contradiction to 8 does not satisfy 

a PI of degree _< m + 4. 

Now suppose that  (ii) holds. We may assume without loss of generality that  

the monomial x l x 2 " " X m  is involved in f with coefficient 1. Setting 

A =  ~AI ifAl ~ 0 ,  
[ i if hl = O, 

we conclude from (15) that  

(19) ~[[5, s],  s] ~ c c. 

According to Lemma 3.3 we have 
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w h e r e h E  J a n d g E U .  Forum E 8  m w e s e t  

and note that  T(~m) E C by (19). 

Clearly 

(20) f(u~n) = {urn o h(~m-1)}" + g(~m)" 

for all Um E Sm. Using (20) we now get 

~ r ~  u a ~] A f ( u ~ _ , , j ,  m-l ,  m,, = ~f(~m-1, ](~m-1, ~ ) ) a  

=/~ f (um-1 ,  h(~m-1) o Um+ g(Vm--l, Um) ) a 

=:~f(~7,,-~, {h(~m-,) o u~} a + g(~m-~, ~m)") 
(21) 

- a  h - ----/~f(Um_ I, { (Vm-1) o "am} a) -[- T(~m_l,Um)f(m)(~m) 

=)~{h(um-i) o (h(vm-1)o Urn)} a -'k T(Um-i, h(Vm-1) o Urn) 

-{- T(Vm--1, um ) f (m) (~m)" 

Analogously, we have 

Af(~m_ 1, f ( ~ ) )  =A f (~m-1,  f (~m) ) a 

=Af(~m- l ,Um o h(~m-1) + g(~m)) a 

(22) =Af(v~n_ 1 , {urn o h(~m_l)} a) q- T ( ~ m ) f ( m ) ( ~ )  

=A{h(Vm-1) o (h(um-1) o Urn)} a -'k r(Vm-1 ,Urn o h(um-1)) 

+ "r(um)f (m) (~m)" 

It follows from (7) and (19) that  

A{(h(~m-1) o urn) o h(~m_l)} a - A{(h(~m-1) o urn) o h(Vm_l)} a 

= A[[h(~m-1), h(~m-1)],Um] a • C. 

Comparing (22) and (21), we obtain 

~ ] ( ~ - 1 ,  l ( ~ - ~ ,  ~7~)) - ~"~J, .~-l,.,"~m,, ~ 

-~(~m_l ,  ~m)l(m)(~7~)+ ~ (~m) / (~ ) (~ )  • C 

for all U m •  S m, ~m-1 • sm-~.  By Theorem 2.5, 

(23) ~:(~.~-~, ](~.~-1, xm)) - ~f(~m-~, :(~m)) = 0 

as an element of Z (Xl, x~ , . . . ,  Xm, y~, Y2, . . . ,  Ym- ~). However, since xl x~ . . .  Xm 
is a monomial of f ,  Ax~x2""Xm- ly l y2""ym-~Xm should be a monomial of 
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the polynomial on the left side of (23). With this contradiction the lemma is 

proved. | 

LEMMA 3.5: f f  ei ther O) or (ii) holds, then there exist  an invertible A2 6 C, a 

Z - m o d u l e  m a p  7: S -+ C and a bilinear m a p  u: $2 _~ C such that  

(24) (u o v) ~ = A2u a o v ~ + 7 (u )v  ~ + 7 (v )u  ̀ ~ + u(u,  v) 

for ali u, v E S .  Furthermore, 2A2u(u, v) + 7(u o v) = 7(u )7 (v )  for all u, v 6 S .  

Proof: Define B: S 2 --> Q by B ( u ,  v) = (u o v) ~, u, v 6 S .  Corollary 3.2 and 

Lemma 3.4 show that  

(25) [[u~, v~], w~] = A~-I {[[u, v], w]~ + w(u, v, w)} 

for all u, v, w 6 S. Clearly [u o v, w] + Iv o w, u] + [w o u, v] = 0. Applying (x to 

[[u o v, ~]  + Iv o w, u] + [w o u, ~], t] = 0 

and making use of (25) we get 

[[B(u, v), ~ ]  + [ B ( ~ ,  u), v ~1 + [B(v, ~), us], t ~] = 0 

for all u , v , w , t  6 S .  Since S ~ is in particular 5-free, we conclude from 

Theorem 2.6 that  

B ( u , v )  , ,~ c~ ,, ~ A2U v + 71(U)v a + 72(v)u a + = + A2v u v ( u , v )  

I I t  for some A2,A 2 6 C, 71,72: S --+ C, u: S 2 --+ C. Since B ( u , v )  = B ( v , u ) ,  

Theorem 2.5 shows that  A~ = A~' = A2 and 71 = 72 = % Therefore 

(26) (uo v) a = B ( u ,  v) = A2(u ~ o v ~) + 3,(u)v ~ + 7 (v )u  ~ + u(u,  v). 

Next we show that  A2 is invertible. Suppose that  A~ = 0 and set 

A=[A2 i f A 2 # O ,  
[ 1 if he = 0. 

Then it follows easily from repeated use of (26) that 

A{(u o v) o w} ~ = ~l (v, w)u" + ~2(~, w)v ~ + ¢3(u, v)w ~ + ,~ (u, v, w) 

for all u, v, w 6 S, where ~1, ~2, if3:S2 --r C and r/l: S 3 --+ C are some maps. 

Therefore 

~[[~, v], ~1- = ~ { ( u  o v) o w - (u o w) o v } -  

= ~4(v ,w)u  ~ + ~5(u,w)v ~ + ~6(u,v)w" + o 2 ( u , v , ~ ) ,  



304 K.I. BEIDAR ET AL. Isr. J. Math. 

where (4,(5,~6:,52 --+ C and ~2:$3 __+ C. But on the other hand, )~[[w, v], u] ~ 
= AA1 [[w a, va], u ~] + Aw(u, v, w). Since /XA1 is nonzero, this contradicts 

Theorem 2.5. 

Finally, we show that  2/k2u(u,v) + 7(u o v) = 7(u)7(v). This is done by 

computing [[w, v], u] a in two different ways and applying Theorem 2.5. On the 

one hand, by Corollary 3.2 

(27) [[~, v], ~]~ = ~l[[W ~, v~], ~ ]  + ~(~,  ~, ~). 

On the other hand, in view of (7) we have 

(28) [[~, v], u]~ = ((~ o v) o ~)~ - ((u o ~) o ~)~. 

Expanding (28) by repeated applications of (26) we see in particular that  the 

coefficient of w a is 2A2v(u, v) + 7(u o v) - 7(u)7(v) (we leave the straightforward 

details to the reader). In view of Theorem 2.5 a comparison with (27) then 

completes the proof. | 

Following [13, p. 535] we now define a map/~: S --+ Q by 

1 
u ~ = ~2u ~ + ~ ( u ) .  

LEMMA 3.6: /3  is a Jordan homomorphism of Z-algebras. 

Proof: 

while 

Let u, v C $. Then 

1 (uov)~ =~2(uo~) ~ + ~ ( u o v )  

= ~ ( ~  o v ~) + ~ 7 ( ~ ) v  ~ 

1 
+ ~ ( v ) u "  + ~ , ( u , ~ )  + ~ ( ~  o v), 

1 ] 
U ~ o v ~  ( 2u + ( 2v° + 

1 
= ~ ( u  ~ o v ~) + ~ ( ~ ) v  ~ + ~ ( v ) u  ~ + ~ ( ~ ) ~ ( v ) .  

By the last part of Lemma 3.5 it is immediate that  (u o v)Z = u z o v 9, and the 

proof is complete. | 

1/~--1 '~U" ~o: SettingA = ~  1 and#(u )  = - ~  2 7~ ), we thushave  =Au~+p(u).  We 

now summarize all partial results into the following statement. 
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THEOREM 3.7: Let 13 and Q be associative algebras over a commutative unital 
1 ring Z .  Suppose that Q is a unital algebra with ~ E Q and that every element 

in its center C is either invertible or has square zero. Let S be Jordan subalgebra 

of the algebra 13 and let f ( x l , . . . ,  Xm) E Z ( X ) ,  m >_ 2 be a proper multilinear 

polynomial such that f (u l , . .  •, urn) E S for all ul , . . . , Um E $.  Further, suppose 

that a: $ --+ Q is a Z-module  map satisfying 

f (u l , . . . ,Um)  a - - f ( u ~ , . . . , u ~ )  

for all u l , . . . ,  um E S.  Assume that the range of a is a (3m)-free subset of Q 

and that at least one of the following two conditions holds: 

(i) a is one-to-one and S does not satisfy a P I  of degree <_ m + 4. 

(ii) f is a Jordan polynomial. 

Then 
u s = Au ~ + ~ ( u ) ,  

for all u E S,  where A E C is invertible, #: S --+ C is a Z-module  map and 

/3: S --+ Q is a Jordan homomorphism of Z-algebras. 

As mentioned in the introduction, we note that Theorem 3.7 essentially 

reduces the problem of characterizing f-homomorphisms to that of analyzing 

Jordan homomorphisms. Under various conditions, notably those involving the 

Zelmanov polynomial [25, 26] it is known that a Jordan homomorphism is just 

the restriction of an ordinary homomorphism. 

We choose, however, to focus on an important special case of Theorem 3.7, 

one in which the Zelmanov polynomial is not required. Indeed, in Theorem 3.9 

(which is our final goal) we will be concerned with a generalization of the situa- 

tion in which S is the Jordan ring of symmetric elements of a Z-algebra/3 with 

involution. Theorem 1.1 illustrates Theorem 3.9 with a specific but important 

example in which the somewhat unnatural freeness conditions are avoided in 

the hypothesis. 

First, however, in what may be of independent interest, we make a couple of 

general observations (Lemma 3.8) about Jordan subrings of associative rings. 

LEMMA 3.8: Let 13 be an associative algebra over a commutative unital ring Z 
1 with Jordan subalgebraS. Assume that [S,S]o[S,S] c_ S and ~ E Z.  Let (S) be 

the associative subalgebra of B generated by S.  Then ($) = S + [$, $] + [S, S] oS 

and S + [S, S] is a Lie ideal of (S) containing [($), ($)]. 

Proof: Set T = $ + [$, S] + [S, S] o S. Clearly T c ($). To prove the opposite 

inclusion, it is enough to show that xs E T for all s E S and x E T. If x E $, 
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then xs  = l([x,  s] + x o s) • T.  Next,  if x • [S, S], then we may assume wi thout  

loss of generality tha t  x = [u, v] for some u, v • S.  We now have xs  = [u, v]s = 

½ ([u, v] o s + [[u, v], s]) • T because  [[u, v], s] = (s o v) o u - (s o u) o v • S by (7). 

Further,  if x • [8, S] o S,  we may assume that  x = [u, v] o w for some u, v, w • S.  

Therefore 

x s  : ~ ( [ [~ ,v ]  o ~ ,  s] + ([~, v] o ~ )  o s).  
- i  

Since [[u, v], s] • $ ,  it follows from our assumpt ion that  

(29) [[u, v] o w,  s] = [u, v] o [w, s] + [[u, v], s] o w • $ c_ T .  

Making use of (7) we see that  

([u, v] o w)  o s = [u, v] o (w o s) + [[s, [u, vii, ~] .  

Since w o s E S,  [u, v] o (w o s) E 7". As Is, [u, v]] E $ by (7), we conclude tha t  

[[s, [u, v]], w] E T.  Therefore ([u, v] o w) o s E T and so xs  E T for all x E T,  

s E S. Thus  T = (S). 

Set 3 / =  S + [8, S]. It is enough to show tha t  U _D [(S), (S>]. By  [11, L e m m a  

9.1.2], [(S), (S)] -- [S, (S)]. Note  tha t  [$ ,8]  C_ 14 while [ [S ,8] ,S]  C ,S C_ 14 by 

(7). Finally, [$, [S, S] o $] C_/4 by (29). Thus  IS, ($)] C /4 and the proof  is 

thereby complete.  

THEOREM 3.9: Let  B and Q be associative algebras over a commuta t i ve  unital 
1 ring Z .  Suppose  that  Q is a unital algebra with ~ E Q and that  every e lement  

in its center C is either invertible or has square zero and C is a direct s u m m a n d  

o f  the C-module  Q. Le t  S be a Jordan subalgebra o f  the algebra B such that  

S M  [S,S] = 0 and [S,S] o [S,S] C_ $ .  Le t  f ( x l , . . . , X m )  E Z<X>, m >_ 2 be a 

proper  mult i l inear polynomial  such that  f (ul , . . . , u,~ ) E 8 for all Ul , . . . , Um E 

8 .  Further, suppose  that  a:  $ -+ Q is a Z - m o d u l e  m a p  satisfying 

, ,  U ¢~ f ( u l ,  ., m) = f ( u ~ , - - - , U ~ m )  

for all u l , . . .  ,urn E S .  A s s u m e  that  S ~ is a max{3m,  7}-free subset  o f  Q and 

that  at least one o f  the following two conditions holds: 

(i) a is one-to-one and S does not  satisfy a P I  o f  degree ~_ ra + 4. 

(ii) .f is a Jordan polynomial .  

Then  there exist  A E C, A m-1 = 1, a Z - m o d u l e  m a p  ¢: $ --~ C, and a Z-algebra 

homomorph i sm  a: (S)  ~ (S~)C + C such that  u s = Au ~ + ¢ ( u )  for all u E S .  

Furthermore,  i f  f(i) ~ 0 for some  i, then ¢ = O. 
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Proof'. We may apply Theorem 3.7 to obtain 

(30) u" = ~u ~ + ~(u) ,  u ~ S ,  

where A • C is invertible, #: $ -+ C is a Z-module map, and /?: $ -+ Q 

is a Jordan homomorphism of Z-algebras. For convenience we may assume 

B = (S). By Lemma3.8 ,  /4 = S o [ S , S ]  is a Lie ideal o r B .  We define a 

mapping 7:/4 -+ Q = Q/C according to the rule 

~"rvg,  w@l u + ~ " : j v .  w i ]  -> uZ + z...~ . ~ ,. 

To show that  ? is well-defined suppose Z[vi ,  wi] = O. Then we have ~[[vi,  wi], t] 
= 0 for all t • S and, applying/~, we obtain 

~--~[[v~, w ~ ] , t  ~] = z...,~V'Hv~,w~l,)~-~t"]~ ~ , = 0 

for all t • S. Since S~ is 3m-free this puts V'[v~ w@l • C, that  is, V'[vg, w~] = 0. L--dL ~ ' ~ J  1..-4L ~ I J  

We now show that ? is a Lie homomorphisms. Let x, y • U. I t  is enough to 

show that  [x,y] ~ = [x~,y~]. There are three cases to consider. 

CASE 1: Assume that  x ,y  • S. Then 

[x, ~]~ = [x~, y~] = [x~, y~] = [x~, y~]. 

CASE 2: Suppose that  x E [8,8] and y E S. Recalling that  ? is an additive 

map, we may assume without loss of generality that  x = [u, v] for some u, v E 8. 

Since/~ is a Jordan homomorphism, (7) together with Case 1 yield 

[[~, v], y]~ = {(y o v) o ~ - (y o ~) o v}~ 

= {(~ o v) o ~}~ - {(y o u) o v F  

= [[u,,  ~ ] ,  yz] = [ [ ~ ,  ~ ] ,  y~] = [x~, f ] .  

CASE 3: Assume x,y e [S,S]. Again we may suppose that  x = [u,v] and 

y = [p, q] for some u, v, p, q • S. In view of (7), [[S, S], S] C_ S and so we get by 

the above cases that  

Ix, y]~ = [[u, v], [p, q]F = {[[u, [P, q]], v] + [u, Iv, [p, q]]]F 

= [[u, [p, q]]7, v ~] + [u ~, [v, ~v, q]]7] 

= [ [ ~ ,  L, ~, q~]], v~] + [u~, [v~, ~ ,  q~]]] 

= [ [ ~ ,  v~], [p~, q~]] = [x~, y~]  
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Therefore 3: is a Lie homomorphism whose image L/~ can be written as T where 

T = A - 1 S  ~ + ,~-2[S~,S~].  Since S ~ is 7-free, by Theorem 2.3(b) A-1S~ is 

7-free and so T is 7-free by Theorem 2.3(a). Noting that  1 is the only nonzero 

idempotent  in C we see by Theorem 2.7 that  there exists a map a: (L/) --+ (Sc~)C+ 

C such that  a is either a homomorphism or the negative of an ant ihomomorphism 

X and such that  ~ -  = u "~ for all u 6 /4. In particular, for u 6 S, we have 

u ---x = u 7 = uZ and so u ~ = u ~ + p ( u ) ,  p: S --+ C. We claim tha t  a is a 

homomorphism. Indeed, suppose a = -X.  For u, v E S, on the one hand, 

(31) ( u o v )  ~ = - ( u o v )  X - - - u  ~:ov ~( = - u  a o v  ~. 

On the other hand, 

(uovV = (uov)~ +p(uov) = u~ov~ +p(~ov) 

(32) = (u a - p ( u ) ) o  (c a - p ( v ) )  + p ( u o v )  

= : o v  a - 2 p ( ~ ) :  - 2 p ( v ) :  + 2 p ( u ) p ( v )  + p ( ~ o v ) .  

Comparing (31) and (32) and multiplying through by A -~ we obtain 

u s o v ~ + r l ( u , v ) u  ~ + r 2 ( u , v ) v  ~ + r a ( u , v )  = 0 

for all u , v  6 S and appropriate  7=i: S --+ C. In view of Theorem 2.5 this contra- 

dicts the 3m-freeness of 8 %  Therefore ~r is a homomorphism and, substi tuting 

u ~ = u a - p(u) in (30), we see that  

( 3 3 )  u s = ~ u  a + ~ ( u ) ,  ~ :  S - ~  C 

for all u 6 S. Finally, using (33), we may now write, for all Um E s m ,  

f(Um) = f(Um) '> = Af(Um) a + ¢(f(Um)) 

= Af(Um) + ¢ ( f ( U m ) )  

-- A f ( . . . ,  A- lu~ - ¢ ( u i ) , . . . )  + ¢ ( f ( U m ) )  
(34) m 

1 - m  --a U s  =/~ f (Um)  - E A 2 - m ¢ ( u i ) f ( u ? ' ' ' ' ' I  . . . .  , m) 
i=1 

+ lower powers. 

By Theorem 2.5 we conclude from (34) tha t  )~m-t = 1 and, if some f( i)  # O, 

that  ¢ = 0. The proof of Theorem 3.9 is now complete. I 

P r o o f  o f  Theorem 1.1: We proceed to show that  the conditions of Theorem 3.9 

are satisfied. First, it is well-known and easy to see that  $ M [S, S] = 0 and S 
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is closed under [ ,  ]o [ ,  ]. Furthermore, Qmr(Z) = Q [11, Proposition 2.1.10] 

and deg(Z) = deg(A) by Theorem 2.2(a). Thus deg(Z) > max{6m + 1, 15}. By 

Theorem 2.2(c) $(Z) is a max{3m, 7}-free subset of Q, and so by Theorem 2.3(a) 

$~ is a max{3rn, 7}-free subset of Q. Therefore all the conditions of Theorem 3.9 

hold and the proof is thereby complete. | 

4. f -der iva t ions  

In an analogous fashion to the concept of an f-homomorphism we define the 

notion of an f-derivation in a natural way as follows. Let Q be a Z-algebra with 

1, and let A be a Z-subalgebra of Q. Let f ( x l , . . .  ,Zm) E Z ( X )  be a proper 

multilinear polynomial of degree m >_ 2, and let S be a Z-submodule of A such 

that f(~m) E $ for all Sm=  ( s l , . . . ,  sin) E S'~. A Z-module map 6: S -+ Q is 

said to be an f-derivation if 

?Tt 

f(Sm)5 = E f ( s l , . . . , s i - l , s b i , . . . , S m )  
/ = 1  

for all -sin E Sin. 

The goal of this section is to analyze f-derivations of ,.q where S is a Jordan 

subalgebra of ,4 and appropriate conditions hold on ,4 and S. 

We now proceed to prove the analogues of Theorems 3.7 and 3.9, combining 

them in a single result. 

THEOREM 4.1: Let $ be a Jordan subalgebra of a unital Z-algebra Q, whose 
1 center C is a field. Let ~ E C. Let f ( x l , . . . , x , ~ )  E Z ( X ) ,  m > 1, be a proper 

multilinear polynomial. Suppose S is closed under f and is a max{3m, 7}-free 

subset of Q. Let 5: $ -~ Q be an f-derivation. Then: 

(a) There exists a Jordan derivation p: ,S -~ Q, A E C, and a Z-module  map 

It: S --+ C such that 

s ~ = s p + A s + # ( s ) ,  s E S .  

(b) I f  S M [S, $] = 0 and [S, S] o [S, S] C_ $, then there exists a derivation 

d: ($) -+ Q, A E C, and a Z-module  map #: ,S --+ C such that 

s 5 = s  e + A s + l t ( s ) ,  s E $ .  

Furthermore, we have: 

(bl) I f  the characteristic of C does not divide m - 1 then A = O. 
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(b2) I f  f(i) # 0 for some i then # = 0. 

Proo~ We form the ring Q = Q @ Q with multiplication given by (s, t) (u, v) = 

(su, sv + tu),  s, t, u, v E Q. (Note that  Q is really just the ring of 2 × 2 matrices 

over Q of the form s(el l  +e22) +tel2.)  The center of Q is C = COC and satisfies 

condition (16): every element of C" is either invertible or has square zero. We 

define a: S -+ Q according to the rule s --+ (s, s ~) and it is easily seen that  a is 

a one-to-one f-homomorphism. 

The fact that  $ is max{3m, 7}-free implies that  $ does not satisfy a PI of 

degree _< m + 4, and so condition (i) is satisfied. 

Furthermore, $~ is a max{3m, 7}-free subset of Q by Theorem 2.4, and so 

we may apply (an equivalent form of) Theorem 3.7 to the map a (with Q now 

playing the role of Q) to conclude that  there exist a Jordan homomorphism 

fl: $ -+ 3 ,  an invertible element c E C'and a Z-module map ?: ,S -+ C'such that  

(35) s f~ = cs ~ + "/(s) for all s E $. 

We may write c = (T,A'), % A' E C, 7 ~ 0, and 7(s) = (X(S),I t ' (s))  where 

X, #'  are Z-module maps of 8 into C. Comparing the first components of 

( s o t )  z = s z o t  z, s , t  E S,  we see that  

(T 2 -- T)(S o t) + 2 T x ( t ) s  + 2TX(S) t  + 2X(S)X( t  ) -- X(S o t) = O. 

Since 8 is 3m-free, by Theorem 2.5 we conclude that  T = 1 and X = 0. Thus 

(35) reduces to s ~ = (s, s ~ + A's + #'(s)) for all s E S. Accordingly we set 

s p = s ~ + Ars + #r(s), for all s E S, and note (from the fact that /~  is a Jordan 

homomorphism) that  p is a Jordan derivation. This completes the proof of (a). 

We now turn our attention to the proof of (b). Since all the conditions 

of Theorem 3.9 are satisfied, we conclude that  there exist a homomorphism 

~: (,S) -+ 3 ,  an element c E C with c m-1 ---- 1, and a Z-module map -y: ,S -+ C" 

such that  

(36) s v = c s  ~ + ? ( s ) ,  s E S .  

We write c -- (r, ~1), T, A' E C, noting from c m-1 = 1 that  in particular 

(37) (m - 1)rm-2A ' = 0. 

We also write "/(s) = (X(S),I t ' (s))  where X, #' are Z-module maps of S into 

C. Since ~ is also a Jordan homomorphism, (36) can be used in place of (35) 
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and accordingly we may again conclude that  T = 1 and )/ = 0. Therefore we 

have 

(38) s~ = (s, # + A's + # ( s ) ) ,  s E s .  

It follows from (38) that  for all x E (S ) ,  x ~° : (x,  xd) ,  where d: (S) ~ Q 

is a well-defined Z-module map. Since (xy )  ~° = x~Oy ~°, x , y  E (S), we see that  

(xy )  d = x y  d + xdy ,  that  is, d is a derivation. In particular, in view of (38), 

s d = s ~ + A'.s + # ' ( s ) ,  s E $ ,  and the first part  of (b) has been proved. If the 

characteristic of g does not divide m - 1 it follows from (37) tha t  A j = 0, thus 

establishing (bl).  If f(i) is not equal to 0 for some i, it follows from Theorem 3.9 

that  ~ = 0 and in particular tha t  it' = 0. Thus (b2) is proved and with it the 

proof of Theorem 4.1 is now complete. | 

To illustrate (bl)  in Theorem 4.1 we first remark that  if Q is (m - 1)-torsion 

and A is any element of g then the map ~ given by s 5 = As is an f-derivation. 

Next we illustrate (b2) as follows. Let g be a field, let A be the free noncom- 

mutative algebra in indeterminates Yl, y2,. •. ,  Y2m over g with constant term 

0, let * be the "reversal" operator on ,4, and let S be the symmetric ele- 

ments of ,4 under the involution , .  Clearly, the set of all elements of the form 

M k  ---- Yil " "" Yik + Yik " "" Y~I constitutes a g-basis for S. Let p: S --+ g be a linear 

map subject to the requirement that  # ( M k )  = 0 for k _> 2m. We define 5 by 

s ~ = #(s), s E S and let 

f (x l , . . . ,  x~m) = St2m(xl,. . . ,  x~,~) 

where S t2m is the standard polynomial of degree 2m. 

Clearly f(-$2m) ~ = 0 for all S2m E S 2m. On the other hand, we see that  

2ra 2 m  

Z f ( S l ' " " # ( S i ) " " ' S 2 m ) - - - - Z # ( s i ) f ( s l ' " " l ' " " S 2 m ) - - - - 0 "  
i----1 i=1 

Therefore 6 is an f-derivation. 

P r o o f  o f  T h e o r e m  1.2: By Theorem 2.2 all conditions of Theorem 4.1 are 

satisfied. 
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